
Case Study for Airbnb in Washington D.C:

What should investors do to achieve high booking rate?

1. Cover Page
Data	Mining	and	Predictive	Analysis	

Title:		

Case	Study	for	Airbnb	in	Washington	D.C:		
What	should	investors	do	to	achieve	high	booking	rate?	
Explanatory	Model	and	Prediction	Model	for	Achieveing	High	Airbnb	Booking	Rate	

Market:	Washington	D.C.	

“We,the	undersigned	certify	that	the	report	submitted	is	our	own	original	work:	all	authors	
participated	in	the	work	in	a	substantive	way;	all	authors	have	seen	and	approved	the	report	
as	submitted;	the	text,	images,	illusions,	and	other	items	included	in	the	manuscript	do	not	
carry	any	infringement/plagiarism	issue	upon	any	existing	copyright	materials.”	

Team	member	1	Rui	Ma	

Team	member	2	Wanyun	Yang	

Team	member	3	Jingyu	Liao	

Team	member	4	Zilinmei	Ye	

Team	member	5	Gongshun	Wang	

Team	member	6	Mengyuan	Jin	

2. Executive Summary
Airbnb	has	been	essential	 part	 of	 leisure	 and	 tourism	 industry.	An	 increasing	number	of	
travelers	takes	rental	home	as	their	first	choice	for	destination	accommodation.	Therefore,	
making	a	right	purchase	decision	for	an	Airbnb	property	will	finally	turn	out	to	be	a	good	
investment.	Our	goal	of	this	study	is	to	help	investors	make	such	decisions,	specifically	in	the	
D.C.	market.	

The	dataset	for	this	D.C	market	study	has	over	5450	Airbnb	records.	Variables	are	divided	
into	4	categories:	community	features,	property	features,	management	features	and	review	
features.	 For	 community	 features,	we	 integrated	external	dataset	 to	 include	 features	 like	
safety(crime),	 economy(income	 per	 capita)	 and	 transportation(distance	 to	 the	 nearest	

metro	entrance).	We	used	visualization	and	regression	to	figure	out	what	are	the	community	
features	of	the	properties	that	have	a	high	booking	rate;	for	property	features,	we	followed	
a	similar	path	as	community	part.	We	also	include	all	four	categories	of	variables	to	predict	
a	potentially	high	booking	rate	property	using	ensemble	methods	and	analyze	the	features	
that	could	improve	the	possibility	to	be	a	good	buy.	

As	a	result,	we	found	that	for	all	the	ward	areas	in	Washington	DC.,	ward	1,	2,	6	would	be	the	
most	optimistic	choice.	Apartment	and	townhouses	are	the	most	popular	type	of	property	
on	airbnb	listing.	The	booking	rate	would	even	be	higher	if	there	are	multiple	bedrooms	and	
bathrooms.	If	the	host	owns	several	airbnb	properties,	this	would	further	boost	the	booking	
rate.	What	 is	 novel	 and	 interesting	 about	 our	 study	 is	 that	 the	 crime	 rate	 in	 each	ward	
actually	 does	 not	 contribute	 to	 any	 significant	 effects	 on	 the	 booking	 rate,	 which	 it	 can	
implies	 that	 in	 the	 city	 of	 washington	 DC,	 there	 is	 not	 a	 clear	 segregation	 of	 safe	
neighborhoods	with	relatively	chaotic	neighborhoods.	Hopefully	these	findings	would	serve	
as	an	useful	guide	for	Airbnb	business	investors	in	D.C.	and	help	to	achieve	a	high	booking	
rate.	

3. Research Questions
The	main	research	question	for	the	study	is	to	analyze	what	are	the	features	of	a	property	
that	could	potentially	have	a	high	booking	rate	in	the	Washington	DC	area.	Under	this	main	
question,	there	are	three	subsequent	questions.	

The	first	sub	question	is	what	are	the	community	features	of	the	properties	that	have	a	high	
booking	rate.	For	securing	a	housing	property.	With	the	background	domain	knowledge	in	
the	real	estate	market,	the	location	of	the	property	is	one	of	the	most	critical	factors	to	be	
considered.	The	property	with	much	smaller	space	but	located	in	a	metropolitan	area	of	the	
city	 could	 be	 listed	 on	 airbnb	 for	 a	much	 higher	 price.	 The	 safety	 level	 of	 the	 allocated	
neighbourhood	within	Washington	DC	would	also	be	another	potential	 factor	 that	affects	
booking	rate.	Therefore,	we	chose	to	consider	this	community	location	features	to	be	the	first	
vital	component	to	take	into	account	for	the	analysis.	

The	second	sub	question	we	have	raised	 is	what	are	 the	significant	housing	 features	of	
airbnb	 rentals	 that	 could	 potentially	 give	 a	 high	 booking	 rate.	 Other	 than	 location,	 the	
capacity	 of	 houses	 and	 the	 amenities	 accompanied	 with	 the	 houses	 is	 the	 next	 vital	
component	 to	 be	 considered	 for	 customers	 on	 deciding	 which	 airbnb	 listing	 to	 book.	
Customers	 visiting	 airbnb	 have	 various	 purposes.	 The	 most	 common	 reasons	 for	 DC	
traveling	could	be	attending	a	meeting.	As	Washington	DC	is	the	capital	of	America,	there	are	
frequent	 holdings	 of	 nation-wide	 meetings	 and	 gatherings	 compared	 to	 other	 cities.The	
other	reason	could	be	for	tourism	purposes,	where	capital	hill	and	washington	monument	
are	both	signatures	tourism	sites	on	the	east	coast.	These	different	purposes	of	customers	
brought	up	different	demands	and	requirements	when	booking	and	airbnb	houses.	The	size	
of	customer	groups	and	the	different	preference	on	amenities	all	contributes	to	this	factor.	
Especially	 for	the	DC	market,	 this	portion	of	analysis	would	help	the	investor	understand	
what	are	the	most	popular	settings	for	property	features	on	airbnb.	

The	third	sub	question	we	have	raised	is	that	overall,	will	a	certain	property	have	a	high	
booking	 rate	 consider	 all	 the	 related	 characteristics.	 After	 the	 detailed	 analysis	 on	 the	
community	influence	and	property’s	physical	feature	effects,	it	is	important	that	we	included	
all	the	relevant	characters	of	certain	airbnb	properties	to	perform	a	combined	analysis.	In	
this	case,	any	interactive	effects	of	different	type	of	features	would	also	be	considered	and	
create	more	accurate	analysis	results.	

4. Methodology and Research

4.1 Question 1: Community characteristics (Where the house should be?)

4.1.1 Data preparation (Integrating external data set)

Firstly,	we	added	an	external	dataset	to	calculate	the	following	variables	that	would	aid	in	
the	project	analysis.	These	newly	added	variables	are	 :1.	 the	distance	of	each	home	to	 its	
nearest	metro	station;	2.	The	ward	number	of	the	neighborhood	that	each	home	belongs	to;	
3.	The	total	crime	number	of	each	ward	for	the	last	two	years;	4.	The	average	income	per	
capita	for	the	resident	within	each	ward	area.	The	following	are	the	coding	portion	for	adding	
external	dataset	and	construct	the	above	new	variables.	

import	libraries	

library("tidyverse")	
library("tidymodels")	
library("plotly")	
library("skimr")	
library("caret")	
library('cowplot')	
library("ggmap")	
library("Imap")	
library("caret")	
library(rpart.plot)	
library("randomForest")	

Filter	out	DC	data	with	a	random	control	starting	with	‘107’	

df_dc <-	
 read_csv("airbnbTrain.csv")	

colnames(df_dc)[66] <- "randomControl"	
df_dc <- 	
 df_dc %>% 	
 filter(randomControl >= 107000) %>% 	
 filter(randomControl < 108000)	

adding	of	variable	-	min_MetroEntranceDist:	Distance	to	the	Nearest	Metro	Entrance.	

# Get DC metro entrances geographic coordinates.	
metro_address <- 	

 read_csv("./original_data/Metro_Station_Entrances_in_DC.csv") %>% 	
 select(X,Y)	

# Calculate the geodesic distance to the nearest metro entrance.	
Geographical distance is the distance measured along the surface of the ear
th.	
df_dc$min_MetroEntranceDist <- NA	
for (i in 1:nrow(df_dc)) {	
 df_dc$min_MetroEntranceDist[i] = gdist(lon.1 = metro_address$X[1],	
 lat.1 = metro_address$Y[1], 	
 lon.2 = df_dc$longitude[i], 	
 lat.2 = df_dc$latitude[i], 	
 units="miles")	
 for (j in 2:nrow(metro_address)) {	
 temp = gdist(lon.1 = metro_address$X[j],	
 lat.1 = metro_address$Y[j], 	
 lon.2 = df_dc$longitude[i], 	
 lat.2 = df_dc$latitude[i], 	
 units="miles")	
 if (df_dc$min_MetroEntranceDist[i] > temp){	
 df_dc$min_MetroEntranceDist[i] = temp	
 }	
 }	
}	

Adding	of	variable	-	Ward	Number:	which	ward	does	the	neighborhood	of	a	property	
belong	to.	

ward1 <- c("Adams Morgan", "Columbia Heights", "Howard University","Lanier He
ights", "Mount Pleasant", "Park View", "Pleasant Plains")	
ward2 <- c("Burleith", "Georgetown", "Logan Circle", "Penn Quarter
", "Sheridan Kalorama","West End")	
ward3 <- c("American University Park", "Forest Hills", "Foxhall", "Frie
ndship Heights", "Glover Park", "Kent", "Massachusetts Heights")	
ward4 <- c("Barnaby Woods", "Brightwood", "Brightwood Park", "Chevy Chase", "
Colonial Village", "Crestwood", "Takoma")	
ward5 <- c("Arboretum", "Bloomingdale "Pleasant Hill", "Queens Chap
el", "Stronghold", "Trinidad", "Truxton Circle", "Woodridge")	
ward6 <- c("Barney Circle", "Near Northeast", "NoMa", "Shaw", "Sou
thwest Waterfront", "Sursum Corda", "Swampoodle")	
ward7 <- c("Benning Heights", "Twining")	
ward8 <- c("Anacostia", "Congress Heights", "Garfield Heights", "K
nox Hill", "Shipley Terrace", "Washington Highlands", "Woodland")	
	
# neighborhoods that cross several wards	
ward13 <- c("Woodley Park")	
ward34 <- c("Chevy Chase")	
ward45 <- c("Riggs Park")	
ward126 <- c("Shaw")	
ward26 <- c("Mount Vernon Square")	

ward12 <- c("U Street Corridor")	
wardNeighboorhood <- list(ward1, ward2, ward3, ward4, ward5, ward6, ward7, wa
rd8, ward12, ward13, ward26, ward126, ward34, ward45)	
names(wardNeighboorhood) <- c("1", "2", "3", "4", "5", "6", "7", "8","12", "1
3", "26", "126", "34", "45")	
df_dc$wardName <- NA	
for (i in 1:nrow(df_dc)) {	
 for (j in 1:length(wardNeighboorhood)) {	
 if (df_dc$neighbourhood[i] %in% wardNeighboorhood[[j]]){	
 df_dc$wardName[i] = names(wardNeighboorhood[j])	
 }	
 }	
}	

Adding	of	variable	-	Crime:	total	crime	numbers	its	ward	over	past	two	years.	

df_dcCrime <- read_csv("./original_data/dc-crimes-search-results.csv")	

df_dcCrime_ward <- 	
 df_dcCrime %>% 	
 group_by(WARD) %>% 	
 tally()	
df_dcCrime_ward <- 	
 df_dcCrime_ward %>% 	
 rbind(c(12, (9148+13409)/2)) %>% 	
 rbind(c(13, (9148+4036)/2)) %>% 	
 rbind(c(26, (13409+11241)/2)) %>% 	
 rbind(c(126, (9148+13409+11241)/3)) %>% 	
 rbind(c(34, (4036+6004)/2)) %>% 	
 rbind(c(45, (6004+10161)/2))	
 	
df_dc$wardCrime <- NA	
for (i in 1:nrow(df_dc)) {	
 for (j in 1:nrow(df_dcCrime_ward)) {	
 if (!is.na(df_dc$wardName[i]) && toString(df_dc$wardName[i]) == df_dcCrim
e_ward$WARD[j]){	
 df_dc$wardCrime[i] = df_dcCrime_ward$n[j]	
 }	
 }	
}	

Adding	of	variable	-	Per	Capita	Income:	Per	capita	income	of	its	ward.	Per	capita	
income	is	total	income	divided	by	total	population.	

df_dcPerCapIncome <- read_csv("./original_data/perCapIncomeWard.csv")	

df_dc$wardPerCapIncome <- NA	
for (i in 1:nrow(df_dc)) {	
 for (j in 1:nrow(df_dcPerCapIncome)) {	
 if (!is.na(df_dc$wardName[i]) && toString(df_dc$wardName[i]) == df_dcPerC
apIncome$Ward[j]){	

 df_dc$wardPerCapIncome[i] = df_dcPerCapIncome$PerCapitalIncome[j]	
 }	
 }	
}	

4.1.2 Varible analysis
For	the	model	analysis	on	the	community	feature	of	the	homes,	our	first	step	is	to	perform	
variable	analysis	to	filter	out	the	appropriate	variables	to	include	in	this	model.	From	all	the	
relevant	variables	in	the	data	set,	we	have	picked	10	variables	to	begin	the	variable	analysis	
and	filtered	out	5	variables	to	include	in	the	model.	The	following	are	the	reasons	variables	
are	 being	 filtered	 out	 through	 variable	 analysis.	 City:	 All	 are	 basically	 (except	 one)	
Washington	DC,	but	written	in	different	ways	like	“Washington,	D.C.”,”	Washington	DC”,	and	
“Washington	 D.C.”.	 Therefore,	 we	 will	 not	 include	 this	 factor	 in	 the	 model.	
Neighborhood_overview:	The	variable	is	strings	written	by	the	renters	and	contains	many	
missing	values	(1653	missing	records),	so	it	is	difficult	to	use.	Neighbourhood:	There	are	
107	unique	neighbourhoods	in	the	training	set.	We	have	to	do	some	classification	since	the	
number	is	very	big,	we	cannot	just	create	a	dummy	variable	based	on	that.	transit:	Similar	
to	some	other	variables,	the	variable	is	strings	written	by	the	renters,	so	it	is	hard	to	use.	
zipcode:	 There	 are	 31	 unique	 zip	 codes	 in	 the	 training	 set	 and	 26	 unique	 values	 in	 the	
validation	set.	We	have	to	do	some	classification	since	the	number	is	very	big,	we	cannot	just	
create	a	dummy	variable	based	on	that.	

dcTrain <-read_csv("airbnbDC.csv") 	

skim(dcTrain)	

The	dataset	has	5492	rows	and	70	columns	that	contain	31	character	type	variables,	1	date	
variable,	9	logical	variables,	and	29	numeric	ones.	As	we	are	only	considering	community	
features	here,	according	to	the	data	dictionary,	I	picked	out	the	following	variable	for	
further	exploration.	

factors<-dcTrain %>% 	
 select(high_booking_rate,city , neighborhood_overview , neighbourhood, revi
ew_scores_location , transit , zipcode, min_MetroEntranceDist, wardCrime, war
dPerCapIncome)	
factors	

dcTrain$zipcode<-gsub(" ", "",dcTrain$zipcode)	
dcTrain$zipcode<-gsub("DC", "",dcTrain$zipcode)	
dcTrain$zipcode<-substr(dcTrain$zipcode, 0, 5)	
unique(dcTrain$zipcode)	

map(factors, ~sum(is.na(.)))	

## $high_booking_rate	
## [1] 0	
## 	
## $city	
## [1] 3	

## 	
## $neighborhood_overview	
## [1] 1667	
## 	
## $neighbourhood	
## [1] 20	
## 	
## $review_scores_location	
## [1] 1127	
## 	
## $transit	
## [1] 1564	
## 	
## $zipcode	
## [1] 113	
## 	
## $min_MetroEntranceDist	
## [1] 0	
## 	
## $wardCrime	
## [1] 534	
## 	
## $wardPerCapIncome	
## [1] 534	

These	five	are	the	final	ones	I	decided	to	use	for	modeling.	They	are	wardName,	
review_scores_location,	min_MetroEntranceDist,	wardCrime,	wardPerCapIncome,	and	
wardName.	

review_scores_location	variable	analysis	

plot1 <- dcTrain %>%	
 ggplot(aes(x =review_scores_location, y = high_booking_rate)) + geom_point(
)	
plot1	

	
plot2<-dcTrain%>%ggplot(aes(x=review_scores_location, color=factor(high_booki
ng_rate))) +geom_histogram(fill="white")	
plot2	

	
plot3<-dcTrain%>%ggplot(aes(x=factor(high_booking_rate),y=review_scores_locat
ion,fill=factor(high_booking_rate)))+geom_boxplot()	
plot3	

	

Review_scores_location	is	actually	what	we	need,	a	numerical	measure	of	location	review.	
However,	there	are	1127	missing	scores	in	the	dataset.	From	the	scatter	plot	of	the	
available	scores	and	the	high	booking	rate,	we	can	see	if	the	score	is	high,	the	houses	may	
have	a	high	booking	rate	or	not.	While	when	the	score	is	less	or	equal	to	6,	no	houses	in	this	
category	have	high	booking	rate.	The	histogram	colored	by	high	booking	rate	is	clearer	that	
most	renders	give	a	high	review	score	of	the	location.	From	the	boxplot,	we	can	see	the	
mean,	and	quartile	of	both	groups	are	high.	The	low	scores	are	determined	as	outliers.	
When	we	use	it	in	the	model,	we	choose	to	leave	it	be,	just	deleting	the	rows	with	NA	value	
in	this	case.	

min_MetroEntranceDist	variable	analysis	

plot4 <- dcTrain %>%	
 ggplot(aes(x =min_MetroEntranceDist, y = high_booking_rate)) + geom_point()	
plot4	

	
plot5<-dcTrain%>%ggplot(aes(x=min_MetroEntranceDist, color=factor(high_bookin
g_rate))) +geom_histogram(fill="white")	
plot5	

	
plot6<-dcTrain%>%ggplot(aes(x=factor(high_booking_rate),y=min_MetroEntranceDi
st,fill=factor(high_booking_rate)))+geom_boxplot()	
plot6	

	

From	the	histogram,	we	can	tell	people	tend	to	choose	the	properties	that	are	close	to	the	
metro	station.	The	bar	reaches	the	peak	around	0.5	miles,	which	is	reasonable	since	people	
do	not	have	vehicle	to	use	when	they	visit	other	places.	At	that	moment,	the	transportation	
resource	nearby	is	crucial.	From	the	boxplot,	we	still	cannot	see	much	difference	between	
the	two	groups.	Means	and	quartile	are	roughly	the	same.	The	range	of	the	distance	for	
non-popular	houses	are	bigger	because	of	the	outliers	at	the	upper	corner.	

wardCrime	variable	analysis	

plot7 <- dcTrain %>%	
 ggplot(aes(x =wardCrime, y = high_booking_rate)) + geom_point()	
plot7	

	
plot8<-dcTrain%>%ggplot(aes(x=wardCrime, color=factor(high_booking_rate))) +g
eom_histogram(fill="white")	
plot8	

	
plot9<-dcTrain%>%ggplot(aes(x=factor(high_booking_rate),y=wardCrime,fill=fact
or(high_booking_rate)))+geom_boxplot()	
plot9	

	

From	the	histogram	plot,	we	can	tell	the	total	number	of	houses	in	the	more	dangerous	
areas	is	larger.	The	possible	reason	could	be	urban	area	tend	to	have	bigger	population	and	
higher	crime	rate	than	rural	places	or	the	suburban.	The	means	are	very	close	to	each	
other,	but	the	quartile	of	houses	with	high	booking	rate	is	larger.	

wardPerCapIncome	variable	analysis	

For	the	variable	wardPerCapIncome,	the	means	are	very	close	to	each	other,	but	the	
quartile	of	houses	with	high	booking	rate	is	larger.	Its	quartile	boundaries	are	also	lower	
than	the	ones	of	non-popular	houses.	

plot10 <- dcTrain %>%	
 ggplot(aes(x =wardPerCapIncome, y = high_booking_rate)) + geom_point()	
plot10	

	

plot11<-dcTrain%>%ggplot(aes(x=wardPerCapIncome, color=factor(high_booking_ra
te))) +geom_histogram(fill="white")	
plot11	

	
plot12<-dcTrain%>%ggplot(aes(x=factor(high_booking_rate),y=wardPerCapIncome,f
ill=factor(high_booking_rate)))+geom_boxplot()	
plot12	

	
dcTrain$wardCrime[is.na(dcTrain$wardCrime)] <- median(dcTrain$wardCrime, na.r
m=TRUE)	
dcTrain$wardPerCapIncome[is.na(dcTrain$wardPerCapIncome)] <- median(dcTrain$w
ardPerCapIncome[], na.rm=TRUE)	
dcTrain<-dcTrain[!is.na(dcTrain$review_scores_location),]	

4.1.3 Explanatory Techniques used for Question 1 - Community features

For	question	1,	we	performed	two	models	for	explanatory	purposes.		

Linear	Model	

fitlm <- lm(formula = high_booking_rate ~ review_scores_location+min_MetroEnt
ranceDist+wardCrime+ wardPerCapIncome+factor(wardName), data = dcTrain)	
	
summary(fitlm)	

## 	
## Call:	
lm(formula = high_booking_rate ~ review_scores_location + min_MetroEntranc
eDist + 	
## wardCrime + wardPerCapIncome + factor(wardName), data = dcTrain)	
## 	
## Residuals:	
## Min 1Q Median 3Q Max 	
## -0.5913 -0.3906 -0.3458 0.5733 0.7367 	
## 	
## Coefficients: (2 not defined because of singularities)	
## Estimate Std. Error t value Pr(>|t|) 	
## (Intercept) -1.470e+00 3.029e-01 -4.853 1.27e-06 ***	
## review_scores_location 4.460e-02 1.296e-02 3.441 0.000586 ***	
## min_MetroEntranceDist -2.226e-02 2.741e-02 -0.812 0.416857 	
## wardCrime 2.592e-05 1.602e-05 1.618 0.105702 	
## wardPerCapIncome 2.078e-05 5.142e-06 4.042 5.40e-05 ***	
## factor(wardName)2 -4.575e-01 8.115e-02 -5.637 1.85e-08 ***	
## factor(wardName)3 -5.065e-01 2.074e-01 -2.443 0.014623 * 	
## factor(wardName)4 2.762e-01 6.713e-02 4.115 3.95e-05 ***	
## factor(wardName)5 4.706e-01 1.175e-01 4.007 6.27e-05 ***	
## factor(wardName)6 -3.911e-02 3.597e-02 -1.087 0.277023 	
## factor(wardName)7 7.907e-01 1.731e-01 4.568 5.08e-06 ***	
## factor(wardName)8 9.025e-01 1.882e-01 4.796 1.68e-06 ***	
## factor(wardName)12 -2.643e-01 5.122e-02 -5.160 2.60e-07 ***	
## factor(wardName)13 -2.398e-01 1.359e-01 -1.765 0.077622 . 	
## factor(wardName)26 -2.111e-01 8.317e-02 -2.539 0.011165 * 	
## factor(wardName)34 NA NA NA NA 	
## factor(wardName)126 NA NA NA NA 	
## ---	
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 0.4888 on 3955 degrees of freedom	
## (395 observations deleted due to missingness)	
## Multiple R-squared: 0.01959, Adjusted R-squared: 0.01612 	
## F-statistic: 5.646 on 14 and 3955 DF, p-value: 5.654e-11	

#plot(fitlm)

We	first	run	a	linear	regression	model	with	the	five	independent	variable	select.	This	will	
show	us	if	there	is	any	linear	correlation	and	impact	contributed	from	each	variable	
selected	to	the	high	booking	rate.	The	code	for	performing	linear	regression	is	displayed.	

Logistic	Model	

fitLog<-glm(data=dcTrain,family = 'binomial', high_booking_rate ~ review_scor
es_location+min_MetroEntranceDist+wardCrime+ wardPerCapIncome+factor(wardName
))	
summary(fitLog)	

## 	
## Call:	
glm(formula = high_booking_rate ~ review_scores_location + min_MetroEntran
ceDist + 	
## wardCrime + wardPerCapIncome + factor(wardName), family = "binomial", 	
## data = dcTrain)	
## 	
## Deviance Residuals: 	
## Min 1Q Median 3Q Max 	
## -1.3393 -0.9950 -0.9201 1.3077 1.6244 	
## 	
## Coefficients: (2 not defined because of singularities)	
## Estimate Std. Error z value Pr(>|z|) 	
## (Intercept) -8.215e+00 1.286e+00 -6.388 1.68e-10 ***	
## review_scores_location 1.987e-01 5.856e-02 3.393 0.000692 ***	
## min_MetroEntranceDist -9.317e-02 1.152e-01 -0.809 0.418458 	
## wardCrime 1.050e-04 6.602e-05 1.590 0.111802 	
## wardPerCapIncome 8.512e-05 2.131e-05 3.995 6.48e-05 ***	
## factor(wardName)2 -1.868e+00 3.376e-01 -5.534 3.14e-08 ***	
## factor(wardName)3 -2.081e+00 8.549e-01 -2.434 0.014914 * 	
## factor(wardName)4 1.131e+00 2.825e-01 4.003 6.26e-05 ***	
## factor(wardName)5 1.941e+00 4.880e-01 3.978 6.94e-05 ***	
## factor(wardName)6 -1.562e-01 1.487e-01 -1.050 0.293680 	
## factor(wardName)7 3.252e+00 7.208e-01 4.512 6.43e-06 ***	
## factor(wardName)8 3.703e+00 7.861e-01 4.711 2.47e-06 ***	
## factor(wardName)12 -1.089e+00 2.166e-01 -5.028 4.96e-07 ***	
## factor(wardName)13 -9.824e-01 5.628e-01 -1.745 0.080900 . 	
## factor(wardName)26 -8.596e-01 3.436e-01 -2.502 0.012358 * 	
## factor(wardName)34 NA NA NA NA 	
## factor(wardName)126 NA NA NA NA 	
## ---	
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## (Dispersion parameter for binomial family taken to be 1)	
## 	
## Null deviance: 5388.6 on 3969 degrees of freedom	
## Residual deviance: 5310.6 on 3955 degrees of freedom	
## (395 observations deleted due to missingness)	
## AIC: 5340.6	
## 	
## Number of Fisher Scoring iterations: 4	

Then,	we	performed	a	logistic	regression	model	on	the	same	independent	variables.	This	is	
also	an	explanatory	model	that	could	give	us	parameters	on	explaining	the	degree	that	each	

variable	is	affecting	the	dependent	variable,	which	is	the	high	booking	rate.	The	code	for	
performing	logistic	regression	is	displayed	below.	

4.2 Question 2: Property characteristics (what kind of house should be to invest)

4.2.1 Data preparation

input	dataset	and	filter	data	to	merely	contain	data	that	relate	to	D.C.	market	

library(readr)	
airbnbTrain1 <- read_csv("airbnbTrain.csv")	

dsAirbnb<-airbnbTrain1 %>% 	
 filter(market=="D.C.")	

a.	Using	tally()	function	to	check	the	categorical	variable(property_type,	room_type,	
bed_type)	to	see	if	each	of	them	has	sufficient	data	to	be	divided	into	the	train	
dataset	and	test	dataset.	

dsAirbnb %>% 	
 group_by(property_type) %>% 	
 tally() %>% 	
 arrange(n)	

dsAirbnb %>% 	
 group_by(room_type) %>% 	
 tally() %>% 	
 arrange(n)	

dsAirbnb %>% 	
 group_by(bed_type) %>% 	
 tally() %>% 	
 arrange(n)	

b.	Recode	property-type	factor	variable	by	combining	its	sub-variables	which	have	
insufficient	data	together;	convert	categorical	variables	into	factor	class.	

dsAirbnb <- 	
 dsAirbnb %>% 	
 mutate(property_type= ifelse(property_type %in% c('Barn', 'Boat', 'Boutique
 hotel', 'Tiny house','Resort','Cottage','Aparthotel'), 'Other', property_typ
e))	
 	
 dsAirbnb %>% 	
 group_by(property_type) %>% 	
 tally()	

#convert char to factor 	
colsToFactor <- c('high_booking_rate', 'bed_type', 'room_type', "property_typ
e")	
dsAirbnb <- dsAirbnb %>%	

 mutate_at(colsToFactor, ~factor(.))	
	
#price 	
#numeric price	
dsAirbnb<-dsAirbnb %>% 	
mutate(price=as.numeric(gsub("[$,]","",dsAirbnb$price)))	

4.2.2 Variable Analysis:

1.	the	number	of	bathrooms	

#distribution of bathroom in D.C. market	
bathroomsPlot <- ggplot(data=dsAirbnb) +	
 geom_histogram(aes(x = bathrooms, fill=high_booking_rate,color='black'))	
ggplotly(bathroomsPlot)	

#The relationship between high-booking-rate Airbnb and the number of bathroom
s.	
plot1 <- ggplot(data = dsAirbnb, aes(x=high_booking_rate, y=bathrooms)) +	
 geom_boxplot(fill="lightblue", color="black") 	
ggplotly(plot1)	

	

As	the	histogram	showing,	among	5452	Airbnbs	in	the	D.C.	market,	most	of	them	that	
around	2518	Airbnb	provide	only	one	bathroom,	and	54%	of	these	one-bathroom	Airbnbs	
have	high-booking	rate.	According	to	the	boxplot,	the	variance	of	the	number	of	bathrooms	
in	non-high-booking-rate	Airbnbs	group	is	larger	than	it	in	high-booking-rate.	It	indicates	
that	providing	more	bathrooms	is	not	a	direct	factor	to	increase	the	booking	rate	for	D.C.	
market’s	Airbnbs.	

2.	the	number	of	bedrooms	

#distribution of bathroom of high-booking-rate airbnb	
bedroomsPlot <- ggplot(data=dsAirbnb) +	
 geom_histogram(aes(x = bedrooms, fill=high_booking_rate),color='black')	
ggplotly(bedroomsPlot)	

#The relationship between high-booking-rate Airbnb and the number of bathroom
s.	
plot2 <- ggplot(data = dsAirbnb, aes(x=high_booking_rate, y=bedrooms)) +	
 geom_boxplot(fill="lightblue", color="black") 	
ggplotly(plot2)	

	

As	the	histogram	showing,	among	5452	Airbnbs	in	the	D.C.	market,	most	of	them	provide	
only	 one	 bedroom,	 and	 52%	 of	 these	 one-bedroom	 Airbnbs	 have	 high-booking	 rate.	
According	to	the	boxplot,	the	distribution	of	the	number	of	bedrooms	in	high-booking-rate	
Airbnb	group	and	non-high-booking-rate	Airbnb	group	are	almost	 identical	excepting	the	
max	value.	The	high-booking-rate	Airbnb	group	has	the	maximum	value-9	bedrooms.		

3.	the	number	of	beds		

#distribution of beds of high-booking-rate airbnb	
	
bedsPlot <- ggplot(data=dsAirbnb) +	
 geom_histogram(aes(x = beds, fill=high_booking_rate),color='black')	
ggplotly(bedsPlot)	

The relationship between the growth rate of high-booking-rate and the numbe
r of beds	
plot3 <- ggplot(data = dsAirbnb, aes(x=high_booking_rate, y=beds)) +	
 geom_boxplot(fill="lightblue", color="black") 	
ggplotly(plot3)

	

Most	of	Airbnb	around	1879	of	them	in	the	D.C.	market	provide	one	bed,	following	that	there	
are	 986	 Airbnb	 offering	 two	 beds.	 Among	 one-bed	 providers,	 45%	 of	 them	 have	 high-
booking-rate.	For	the	second	large	group-	two-beds-providers,	55%	of	them	are	able	to	reach	
high	booking	rate.	As	the	boxplot	showing,	if	excluding	the	outliers,	these	two	groups	have	
almost	same	distributions.	

4.	bed	type	

dsbedtype<-dsAirbnb %>%	
group_by(bed_type)%>%	
tally()%>%	
mutate(pct = 100*n/sum(n))	
arrange(dsbedtype,desc(pct))	

## # A tibble: 5 x 3	
## bed_type n pct	
## <fct> <int> <dbl>	
## 1 Real Bed 5386 98.8 	
## 2 Pull-out Sofa 29 0.532	
## 3 Futon 17 0.312	
## 4 Airbed 11 0.202	
## 5 Couch 9 0.165	

dsbedtype<-dsAirbnb %>%	
 filter(high_booking_rate==1) %>% 	
group_by(bed_type)%>%	
tally()%>%	
mutate(pct = 100*n/sum(n))	
arrange(dsbedtype,desc(pct))	

## # A tibble: 4 x 3	
## bed_type n pct	
## <fct> <int> <dbl>	
## 1 Real Bed 1766 98.9 	
## 2 Pull-out Sofa 15 0.840 	
## 3 Futon 4 0.224 	
## 4 Couch 1 0.0560	

Out	of	the	four	bed	types	of	Real	bed,	pull	out	sofa,	futon,	air	bed	and	couch.	98.78%	of	the	
beds	in	Airbnb	listing	are	real	beds.	Among	the	high	booking	rate	homes,	98.88%	of	them	
are	having	real	beds.	There	are	five	types	of	bed	provided	by	the	D.C.s	Airbnbs,	but	only	
four	of	them	are	offered	by	high-booking-rate	Airbnbs.	It	shows	Airbed	isn`t	a	welcomed	
bed	type.	

5.	room-type	

dsroomtype<-dsAirbnb %>%	
group_by(room_type)%>%	
tally()%>%	
mutate(pct = 100*n/sum(n)) 	
arrange(dsroomtype,desc(pct))	

## # A tibble: 4 x 3	
## room_type n pct	
## <fct> <int> <dbl>	
## 1 Entire home/apt 3893 71.4 	
## 2 Private room 1407 25.8 	
## 3 Shared room 114 2.09 	
## 4 Hotel room 38 0.697	

dsroomtype<-dsAirbnb %>%	
 filter(high_booking_rate==1) %>% 	
group_by(room_type)%>%	
tally()%>%	
mutate(pct = 100*n/sum(n)) 	
arrange(dsroomtype,desc(pct))	

## # A tibble: 4 x 3	
## room_type n pct	
## <fct> <int> <dbl>	
## 1 Entire home/apt 1324 74.1 	
## 2 Private room 419 23.5 	
## 3 Shared room 29 1.62 	
## 4 Hotel room 14 0.784	

The	most	popular	room	type	is	the	entire	home	or	apartment,	with	a	percentage	up	to	
74.13%.	Following	next	is	the	private	room	type	which	accounts	for	23.46%	of	the	airbnb	
homes.	Shared	rooms	and	hotel	rooms	are	least	popular	ones	with	less	than	2%.	

	

6.	property	type	

dsPro<-dsAirbnb %>%	
group_by(property_type)%>%	
tally()%>%	
mutate(pct = 100*n/sum(n)) 	
arrange(dsPro,desc(pct))	

## # A tibble: 13 x 3	
## property_type n pct	
## <fct> <int> <dbl>	
## 1 Apartment 2567 47.1 	
## 2 House 1125 20.6 	
## 3 Townhouse 831 15.2 	
## 4 Condominium 449 8.24 	
## 5 Guest suite 303 5.56 	
## 6 Loft 34 0.624	
## 7 Serviced apartment 31 0.569	
## 8 Bed and breakfast 30 0.550	
## 9 Guesthouse 29 0.532	
## 10 Other 28 0.514	
## 11 Bungalow 10 0.183	
## 12 Hostel 8 0.147	
## 13 Villa 7 0.128	

dsPro<-dsAirbnb %>%	
 filter(high_booking_rate==1) %>% 	
group_by(property_type)%>%	
tally()%>%	
mutate(pct = 100*n/sum(n))	
	
arrange(dsPro,desc(pct))	

## # A tibble: 13 x 3	
## property_type n pct	
## <fct> <int> <dbl>	
## 1 Apartment 800 44.8 	
## 2 Townhouse 372 20.8 	
## 3 House 301 16.9 	
## 4 Guest suite 179 10.0 	
## 5 Condominium 84 4.70 	
## 6 Loft 11 0.616	
## 7 Serviced apartment 11 0.616	
## 8 Guesthouse 10 0.560	
## 9 Bed and breakfast 6 0.336	
## 10 Other 5 0.280	
## 11 Villa 3 0.168	
## 12 Bungalow 2 0.112	
## 13 Hostel 2 0.112	

The	top	five	popular	property	types	of	the	Airbnb	offerings	are	apartment,	house,	
townhouse,	condos	and	guest	suite.	What	worth	to	notice	is	that	among	the	homes	with	
high	booking	rates,	even	though	the	number	of	houses	is	more	than	the	number	of	
townhouses,	more	townhouses	property	type	have	high	booking	rate.	It	means	it	is	more	
popular.	Same	thing	happens	to	guest	suites	and	condos.	More	condos	are	served	as	Airbnb	
than	guest	suites,	but	guest	suites	have	a	larger	percentage	with	high	booking	rate	than	
condos.	Which	implies	that	with	the	apartment	type	is	the	most	popular	property	type,	and	
the	followings	are	townhouses,	houses,	guest	suites	and	condos.	.	

7.	accommodates	

acHis <- ggplot(data=dsAirbnb) +	
 geom_histogram(aes(x = accommodates, fill=high_booking_rate),color='black')	
ggplotly(acHis)	

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.	

plot4 <- ggplot(data = dsAirbnb, aes(x=high_booking_rate, y=accommodates)) +	
 geom_boxplot(fill="lightblue", color="black") 	
ggplotly(plot4)	

	

According	 to	 the	 histogram,	most	 Airbnb	 in	 the	 D.C.	 area	 can	 accommodate	 two	 guests.	
Following	by	that,	the	second	large	group	can	accommodate	four	guests.	The	boxplot	shows	
that	 75th	 percentile	 of	 high-booking-rate	 Airbnb	 provide	 five	 guests	 accommodation.	
Comparing	 the	 non-high-booking-rate	 Airbnb	 group	with	 the	 high-booking-rate	 one,	 the	
high-booking-rate	Airbnb	group	offer	a	larger	accommodation	range.	

8.Price	group	

plot5 <- ggplot(data = dsAirbnb, aes(x=high_booking_rate, y=price)) +	
 geom_boxplot(fill="lightblue", color="black") 	
ggplotly(plot5)	

According	to	the	boxplot,	the	price	of	those	high-booking-rate	Airbnb	centralize	in	265	to	
1450	price	interval.	If	price	is	higher	than	$1450,	it	has	high	probability	to	be	avoided	by	
Airbnb	guests.	

4.2.3 Explanatory Techniques used for Question 2 and Underlying Reasoning-
Property features

In	 question	 2	 on	 analyzing	 property	 features,	 we	 have	 tried	 logistic	 regression,	 LDA	
regression	 for	 the	 same	 purpose	 as	 question	 1	 to	 find	 out	 the	 level	 of	 influence	 of	 each	
variable	to	a	high	booking	rate.	However,	the	result	accuracy	after	exam	model	performance	
is	 not	 quite	 satisfied.	 Then,	we	 tried	 lasso	 regression,	 ridge	 regression	 and	 elastic	 net	 to	
figure	out	the	variable	importance,	which	is	by	ranking	the	significance	of	each	independent	
variable	in	regard	to	high	booking	rate.	The	variable	with	highest	importance	will	affect	the	
result	of	high	booking	rate	the	most,	and	vice	versa.	Furthermore,	when	analyzing	model	
performance,	we	would	like	to	achieve	the	lowest	false	positive	rate.	The	business	ideology	
here	is	that	false	positives	rate	appears	when	the	prospective	home	would	not	achieve	a	high	
booking	rate	but	the	model	mistakenly	predicts	it	to	be	a	high	booking	rate	home.	This	is	the	
worst-case	scenario	for	business	investors,	and	could	potentially	result	in	tremendous	losses	
for	their	investment.	Therefore,	when	evaluating	model	performance.	Our	goal	is	to	pick	the	
model	with	the	lowest	false	positive	rate.	

#create a small dataset; clean missing value 	
dsfit<- subset(dsAirbnb,select=c("high_booking_rate","bathrooms", 'bedrooms'
,'beds','bed_type','room_type','property_type','accommodates','price'))	
dsfit<-na.omit(dsfit)	

Set the seed to 52156, randomly split the dataset into a training dataset a
nd a test dataset. Use 65% of the data for training and hold out 35%.	
set.seed(52156)	
dsfitTr<- dsfit%>% sample_frac(0.65)	
dsfitTe <- setdiff(dsfit, dsfitTr)	

Logistic	regression	

#Run logistic regression model to predict a high-booking-rate Airbnb in D.C.
market:	

Logfit <- glm(high_booking_rate ~ ., family='binomial', data=dsfitTr)	
summary(Logfit)	

## 	
## Call:	
## glm(formula = high_booking_rate ~ ., family = "binomial", data = dsfitTr)	
## 	
## Deviance Residuals: 	
## Min 1Q Median 3Q Max 	
## -2.2519 -0.8912 -0.6904 1.2093 3.1524 	
## 	
## Coefficients:	
## Estimate Std. Error z value Pr(>|z|) 	
## (Intercept) -1.298e+01 1.778e+02 -0.073 0.94180 	
## bathrooms -4.350e-01 9.649e-02 -4.508 6.55e-06 ***	
## bedrooms -2.320e-01 7.675e-02 -3.023 0.00250 ** 	
## beds -2.315e-02 5.360e-02 -0.432 0.66576 	
## bed_typeCouch 1.191e+01 1.778e+02 0.067 0.94657 	
## bed_typeFuton 1.100e+01 1.778e+02 0.062 0.95064 	
## bed_typePull-out Sofa 1.395e+01 1.778e+02 0.078 0.93746 	
## bed_typeReal Bed 1.260e+01 1.778e+02 0.071 0.94349 	
## room_typeHotel room 4.194e-02 7.234e-01 0.058 0.95377 	
## room_typePrivate room -1.904e-01 1.162e-01 -1.639 0.10124 	
## room_typeShared room -2.849e-01 2.869e-01 -0.993 0.32078 	
## property_typeBed and breakfast -6.435e-01 7.312e-01 -0.880 0.37878 	
## property_typeBungalow -7.959e-01 1.137e+00 -0.700 0.48390 	
## property_typeCondominium -4.644e-01 1.560e-01 -2.976 0.00292 ** 	
## property_typeGuest suite 9.061e-01 1.655e-01 5.475 4.37e-08 ***	
## property_typeGuesthouse -3.208e-01 5.784e-01 -0.555 0.57919 	
## property_typeHostel -2.443e+00 1.302e+00 -1.877 0.06055 . 	
## property_typeHouse 1.665e-01 1.226e-01 1.358 0.17444 	
## property_typeLoft 2.991e-01 4.409e-01 0.678 0.49763 	
## property_typeOther -8.824e-01 7.813e-01 -1.129 0.25876 	
## property_typeServiced apartment 1.084e-01 6.180e-01 0.175 0.86077 	
## property_typeTownhouse 7.455e-01 1.211e-01 6.157 7.40e-10 ***	
## property_typeVilla 2.918e-01 9.048e-01 0.323 0.74707 	
## accommodates 2.959e-01 3.627e-02 8.158 3.41e-16 ***	
## price -3.932e-03 4.563e-04 -8.618 < 2e-16 ***	
## ---	
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## (Dispersion parameter for binomial family taken to be 1)	
## 	
## Null deviance: 4469.1 on 3531 degrees of freedom	
## Residual deviance: 4066.3 on 3507 degrees of freedom	
## AIC: 4116.3	
## 	
## Number of Fisher Scoring iterations: 12	

car::vif(Logfit)	

## Registered S3 methods overwritten by 'car':	
## method from	
## influence.merMod lme4	
## cooks.distance.influence.merMod lme4	
## dfbeta.influence.merMod lme4	
## dfbetas.influence.merMod lme4	

## GVIF Df GVIF^(1/(2*Df))	
## bathrooms 2.292091 1 1.513965	
## bedrooms 3.559056 1 1.886546	
## beds 3.710819 1 1.926349	
## bed_type 1.018041 4 1.002238	
## room_type 4.512877 3 1.285510	
## property_type 4.075828 12 1.060292	
## accommodates 4.899644 1 2.213514	
## price 1.549860 1 1.244934	

# vif shows room_type, property_type and accommodates have multicolliearity	
# find way to dismiss it	

Using cut-off 0.5 and do classification in the test data. Compute and repor
t the confusion matrix for the test data prediction

resultsLog <-glm(high_booking_rate ~ ., family='binomial', data=dsfitTr) %>% 	
 predict(dsfitTe, type='response') %>%	
 bind_cols(dsfitTe, predictedProb=.) %>% 	
 mutate(predictedClass = as.factor(ifelse(predictedProb > 0.5, 1, 0)))	
resultsLog	

resultsLog%>% 	
 xtabs(~predictedClass+high_booking_rate, .) %>% 	
 confusionMatrix(positive = '1')	

## Confusion Matrix and Statistics	
## 	
## high_booking_rate	
## predictedClass 0 1	
## 0 758 332	
## 1 115 117	
## 	
## Accuracy : 0.6619 	
## 95% CI : (0.6357, 0.6874)	
## No Information Rate : 0.6604 	
## P-Value [Acc > NIR] : 0.4665 	
## 	
## Kappa : 0.146 	
## 	
## Mcnemar's Test P-Value : <2e-16 	
## 	
## Sensitivity : 0.2606 	
## Specificity : 0.8683 	

## Pos Pred Value : 0.5043 	
## Neg Pred Value : 0.6954 	
## Prevalence : 0.3396 	
## Detection Rate : 0.0885 	
## Detection Prevalence : 0.1755 	
## Balanced Accuracy : 0.5644 	
## 	
## 'Positive' Class : 1 	
## 	

resultsLog %>% 	
 conf_mat(truth = high_booking_rate, estimate = predictedClass) %>% 	
 autoplot(type = 'heatmap')	

	

10-fold	cross	validation	LDA	regression	

# Try other models	
#1. Using 10-fold cross validation resampling method to run a LDA regression	
set.seed(123)	
	
fitLDA <- train(high_booking_rate ~ ., data=dsfitTr, method='lda', trControl=
trainControl(method='cv', number=10))	
	
resultsLDA <-	
 fitLDA %>%	
 predict(dsfitTe, type='raw') %>%	
 bind_cols(dsfitTe, predictedClass=.)	
	
resultsLDA %>% 	
 mutate(isCorrect = ifelse(predictedClass == high_booking_rate, 1, 0)) %>%	
 xtabs(~predictedClass+high_booking_rate, .) %>% 	
 confusionMatrix(positive = '1')	

## Confusion Matrix and Statistics	
## 	
## high_booking_rate	
## predictedClass 0 1	
## 0 772 343	
## 1 101 106	
## 	
## Accuracy : 0.6641 	
## 95% CI : (0.638, 0.6896)	
## No Information Rate : 0.6604 	
## P-Value [Acc > NIR] : 0.398 	
## 	
## Kappa : 0.1385 	
## 	
## Mcnemar's Test P-Value : <2e-16 	
## 	
## Sensitivity : 0.23608 	
## Specificity : 0.88431 	
## Pos Pred Value : 0.51208 	
## Neg Pred Value : 0.69238 	
## Prevalence : 0.33964 	
## Detection Rate : 0.08018 	
## Detection Prevalence : 0.15658 	
## Balanced Accuracy : 0.56019 	
## 	
## 'Positive' Class : 1 	
## 	

#1-specificity	
#Logistics:	
1-0.89158	

## [1] 0.10842	

#1-specificity	
#LDA:	
1- 0.90081 	

## [1] 0.09919	

Comparing	 the	 performance	 of	 the	 Logistics	 regression	 by	 being	 evaluated	 through	
validation	set	resampling	apporach	with	the	performance	of	LDA	model	by	being	evaluated	
through	 10-fold	 cross	 validation	 resampling	 approach	 (Accuracy	 :	 0.6765	 VS.	 Accuracy	 :	
0.6811),	 it	 shows	 the	LDA	 regression	has	 a	higher	 accurancy.In	 this	 business	 case,	 false	
positive	rate(1-specificity)	is	a	more	important	test	metric,	it	shoule	be	as	low	as	possible	so	
that	 the	 probability	 of	 cost	 incurred	 by	mistaken	 prediction	 can	 be	 reduced	 as	much	 as	
possible.	Between	these	two	regression	models,	LDA	has	a	lower	false	positive	rate,	so	LDA	
is	a	better	fitting	model	rather	than	the	logistics	regression.	

Lasso	Model	

#Lasso 	
	
lambdaValues <- 10^seq(-5, 2, length = 100)	
	
set.seed(123)	
	
fitLasso <- train(high_booking_rate ~ ., family='binomial', data=dsfitTr, me
thod='glmnet', trControl=trainControl(method='cv', number=10), tuneGrid = exp
and.grid(alpha=1, lambda=0.01))	
fitLasso	

varImp(fitLasso)$importance %>% # Add scale=FALSE inside VarImp if you don
't want to scale	
 rownames_to_column(var = "Variable") %>%	
 mutate(Importance = scales::percent(Overall/100)) %>% 	
 arrange(desc(Overall)) %>% 	
 as_tibble()	

## # A tibble: 24 x 3	
## Variable Overall Importance	
## <chr> <dbl> <chr> 	
## 1 property_typeGuest suite 100 100% 	
## 2 bed_typePull-out Sofa 88.7 89% 	
## 3 property_typeHostel 72.0 72% 	
## 4 property_typeTownhouse 61.5 62% 	
## 5 property_typeCondominium 38.4 38% 	
## 6 bathrooms 37.1 37% 	
## 7 bed_typeFuton 34.6 35% 	
## 8 accommodates 20.3 20% 	
## 9 bedrooms 6.83 7% 	
## 10 room_typePrivate room 5.77 6% 	
## # … with 14 more rows	

#Variable importance plot with the 25 most important variables	
plot(varImp(fitLasso), top = 25) 	

	
#Optimum lambda selected by the algorithm	
fitLasso$bestTune$lambda # You can also run fitLasso$finalModel$lambdaOpt	

## [1] 0.01	

#Not so useful but helps with understanding -See how different lambda values
drop variables	
#plot(fitLasso$finalModel, xvar="lambda", label = TRUE)	
	
#Not so useful but helps with understanding -See the coefficients from the fi
nal lasso model	
coef(fitLasso$finalModel, fitLasso$bestTune$lambda) # You can also use fitL
asso$finalModel$lambdaOpt	

## 25 x 1 sparse Matrix of class "dgCMatrix"	
## 1	
## (Intercept) -0.566719548	
## bathrooms -0.307320026	
## bedrooms -0.056568822	
## beds . 	
## bed_typeCouch . 	
…	
## price -0.002332013	

resultsLasso <- 	
 fitLasso %>%	
 predict(dsfitTe, type='raw') %>%	
 bind_cols(dsfitTe, predictedClass=.)	
	
resultsLasso %>% 	
 xtabs(~predictedClass+high_booking_rate, .) %>% 	
 confusionMatrix(positive = '1')	

## Confusion Matrix and Statistics	
## 	
## high_booking_rate	
## predictedClass 0 1	
## 0 807 373	
## 1 66 76	
## 	
## Accuracy : 0.6679 	
## 95% CI : (0.6418, 0.6933)	
## No Information Rate : 0.6604 	
## P-Value [Acc > NIR] : 0.2913 	
## 	
## Kappa : 0.1123 	
## 	
## Mcnemar's Test P-Value : <2e-16 	
## 	
## Sensitivity : 0.16927 	
## Specificity : 0.92440 	
## Pos Pred Value : 0.53521 	
## Neg Pred Value : 0.68390 	
## Prevalence : 0.33964 	
## Detection Rate : 0.05749 	
## Detection Prevalence : 0.10741 	
## Balanced Accuracy : 0.54683 	
## 	
## 'Positive' Class : 1 	
## 	

#Accuracy : 0.6765 VS. 	
#1-specificity	
#Logistics:	
1-0.89158	

## [1] 0.10842	

#1-specificity	
#LDA:	
1- 0.90081 	

## [1] 0.09919	

#Accuracy : 0.6811	
	
#1-specificity	
#Lasso	
1-0.93541	

## [1] 0.06459	

# Accuracy : 0.6749	

In	contrast	with	the	Logistcs	model	and	the	LDA	model,	Lasso	model	has	the	lowest	accuracy	
(0.6749)	and	lowest	false	positive	rate(1-specificity),	so	lasso	is	better	than	LDA.	

Ridge	Model	

#Ridge	
	
lambdaValues <- 10^seq(-5, 2, length = 100)	
	
set.seed(123)	
	
fitRidge <- train(high_booking_rate ~ ., family='binomial', data=dsfitTe, met
hod='glmnet', trControl=trainControl(method='cv', number=10), tuneGrid = expa
nd.grid(alpha=0, lambda=lambdaValues))	
	
resultsRidge <- 	
 fitRidge %>%	
 predict(dsfitTe, type='raw') %>%	
 bind_cols(dsfitTe, predictedClass=.)	
resultsRidge	

resultsRidge %>% 	
 xtabs(~predictedClass+high_booking_rate, .) %>% 	
 confusionMatrix(positive = '1')	

## Confusion Matrix and Statistics	
## 	
## high_booking_rate	
## predictedClass 0 1	
## 0 813 372	
## 1 60 77	
## 	
## Accuracy : 0.6732 	
## 95% CI : (0.6472, 0.6985)	
## No Information Rate : 0.6604 	
## P-Value [Acc > NIR] : 0.169 	
## 	
## Kappa : 0.1236 	
## 	
## Mcnemar's Test P-Value : <2e-16 	
## 	
## Sensitivity : 0.17149 	
## Specificity : 0.93127 	
## Pos Pred Value : 0.56204 	
## Neg Pred Value : 0.68608 	
## Prevalence : 0.33964 	
## Detection Rate : 0.05825 	
## Detection Prevalence : 0.10363 	
## Balanced Accuracy : 0.55138 	
## 	

## 'Positive' Class : 1 	
## 	

#Variable importance plot with the 25 most important variables	
plot(varImp(fitRidge), top = 10) 	

	
#Optimum lambda selected by the algorithm	
fitRidge$bestTune$lambda 	

## [1] 0.02477076	
	
#Not so useful but helps with understanding -See the coefficients from the fi
nal lasso model	
coef(fitRidge$finalModel, fitRidge$bestTune$lambda) 	

## 25 x 1 sparse Matrix of class "dgCMatrix"	
## 1	
## (Intercept) -0.916234107	
## bathrooms -0.266029975	
## bedrooms -0.214171202	
…	
## property_typeVilla . 	
## accommodates 0.136921453	
## price -0.001380432	

#Logistics:	
#Accuracy : 0.6765	
#1-specificity	
 0.10842	

## [1] 0.10842	

#LDA:	
#Accuracy : 0.6811	

#1-specificity	
1- 0.90081 	

## [1] 0.09919	

#Lasso	
# Accuracy : 0.6749	
#1-specificity	
1-0.93541	

## [1] 0.06459	

#Ridge	
# Accuracy :0.6865	
#1-specificity	
1-0.96770 	

## [1] 0.0323	

Comparing	with	the	Lasso	regression,	the	Rigde	shows	higher	accuracy	which	means	the	IVs	
are	largely	relevant	to	the	DV.	What`s	more,	the	Ridge	has	the	lowest	false	positive	rate	(1-
specificity)	test	metric,	so	the	Ridge	is	the	best	model	among	all	of	models	so	far.	

#visulization	
	
plotbedtype1<- ggplot(aes(y=predictedClass, x=price), data=resultsRidge) +	ge
om_point() +	geom_smooth() +	labs(title="The price distribution",	y = "The prob
ability of being high-booking-rate", x ="Daily Price")	
ggplotly(plotbedtype1)

	
VfitRidge<-	
 resultsRidge %>% 	
 filter(price<=500)	
	
plotbedrooms2<- ggplot(aes(y=predictedClass , x=price), data=VfitRidge) +	ge

om_point() +	geom_smooth() +	facet_wrap(~ property_type, nrow = 2)+	labs(title=
"What kind of airbnb house might have a high-booking-rate?",	y = "The probabi
lity of being high-booking-rate", x ="Daily Price")	
ggplotly(plotbedrooms2)

	

plotbedtype3<- ggplot(aes(y=price, x=beds,color=predictedClass),data=VfitRidg
e) +	geom_point() +	geom_smooth() +	facet_wrap(~ bedrooms, nrow = 2)+	labs(titl
e="Should additional beds be kept?",	y = "Daily Price", x ="The number of bed
s")	
ggplotly(plotbedtype3)

	
plotbedrooms4<- ggplot(aes(y=price , x=bedrooms ,color=predictedClass), data=
VfitRidge) +	geom_point() +	geom_smooth() +	facet_wrap(~ bathrooms , nrow = 2)+
	labs(title="What kind of structureof Airbnbs might have a high-booking-rate?

", y = "Daily price", x ="The number of bedrooms")	
ggplotly(plotbedrooms4)	

	
We did a visualization to illuminate the relationship among different variables.
As the feature1: The price distribution shows, the daily price of Airbnb should be considered under
$500. According to the Plotbedroom2, for apartment and house type Airbnb, the higher price, the
lower probability to be a high-booking-rate Airbnb; for Town house Airbnb, with price increasing,
the probability of being high-booking-rate and non-high-booking rate is basically same.

According	to	the	plotbedtype3,	 it	 is	a	good	consideration	to	keep	extra	beds	for	two-	and	
three-bedrooms	Airbnb	with	relatively	low-price	interval.	It	might	be	helpful	for	increasing	
the	booking	rate.	

The plotbedroom4 indicates that in the D.C. Airbnb market, most Airbnbs are 1 bathroom and 2
bedrooms structures. For one-bathroom Airbnbs, under the same level price, the more
bedrooms, the higher probability to be a high-booking-rate Airbnb. For the Airbnbs containing one
and half or two bathrooms, even with a higher price, the more bedrooms, the probability to be a
high-booking-rate Airbnb is high.

	

Elastic	net	Model	

#ElasticNet	
set.seed(123)	
	
	
fitElasticNet <- train(high_booking_rate ~ ., family='binomial', data=dsfitTe
, method='glmnet', trControl=trainControl(method='cv', number=10), tuneLength
=10)	
	

	
resultsElasticNet <- 	
 fitElasticNet %>%	
 predict(dsfitTe, type='raw') %>%	
 bind_cols(dsfitTe, predictedClass=.)	
	
resultsElasticNet %>% 	
 xtabs(~predictedClass+high_booking_rate, .) %>% 	
 confusionMatrix(positive = '1')	

## Confusion Matrix and Statistics	
## 	
## high_booking_rate	
## predictedClass 0 1	
## 0 785 335	
## 1 88 114	
## 	
## Accuracy : 0.68 	
## 95% CI : (0.6541, 0.7051)	
## No Information Rate : 0.6604 	
## P-Value [Acc > NIR] : 0.0688 	
## 	
## Kappa : 0.1767 	
## 	
## Mcnemar's Test P-Value : <2e-16 	
## 	
## Sensitivity : 0.25390 	
## Specificity : 0.89920 	
## Pos Pred Value : 0.56436 	
## Neg Pred Value : 0.70089 	
## Prevalence : 0.33964 	
## Detection Rate : 0.08623 	
## Detection Prevalence : 0.15280 	
## Balanced Accuracy : 0.57655 	
## 	
## 'Positive' Class : 1 	
## 	

#Logistics:	
#Accuracy : 0.6765	
#1-specificity	
 0.10842	

## [1] 0.10842	

#LDA:	
#Accuracy : 0.6811	
#1-specificity	
0.09919 	

## [1] 0.09919	

#Lasso	
# Accuracy : 0.6749	
#1-specificity	
0.06459	

## [1] 0.06459	

#Ridge	
# Accuracy :0.6865	
#1-specificity	
0.0323	

## [1] 0.0323	

#ElasticNet	
# Accuracy :0.6858 	
#1-specificity	
0.05075	

## [1] 0.05075	

ElasticNet	has	the	higher	the	false	positive	rate	(1-specificity)	test	metric	than	lasso.	Thus,	
Lasso	is	the	best	model	for	this	business	case.	

ROC	evalutation	

#ROC	
	
Log_to_roc <-	
 train(high_booking_rate ~ ., family='binomial', data=dsfitTr, method = 'glm
') %>% 	
 predict(dsfitTe, type="prob") %>% 	
 cbind(dsfitTe,predictedProb=.) %>% 	
 mutate(model='Log')	

LDA_to_roc <-	
 train(high_booking_rate ~ ., data=dsfitTr, method='lda', trControl=trainCon
trol(method='cv', number=10)) %>%	
 predict(dsfitTe, type="prob") %>%	
 cbind(dsfitTe, predictedProb=.) %>% 	
 mutate(model='LDA')	
	
Lasso_to_roc <-	
 fitLasso %>% 	
 predict(dsfitTe, type="prob") %>% 	
 cbind(dsfitTe, predictedProb=.) %>% 	
 mutate(model='Lasso')	
	
Ridge_to_roc <-	
 fitRidge %>% 	
 predict(dsfitTe, type="prob") %>% 	

 cbind(dsfitTe, predictedProb=.) %>% 	
 mutate(model='Ridge')	
	
ElasticNet_to_roc <-	
 fitElasticNet %>% 	
 predict(dsfitTe, type="prob") %>% 	
 cbind(dsfitTe, predictedProb=.) %>% 	
 mutate(model='ElasticNet')	
	
glmOutAll <- bind_rows(Lasso_to_roc, Ridge_to_roc, ElasticNet_to_roc, Log_to_
roc,ElasticNet_to_roc)	
	
glmOutAll %>%	
 group_by(model) %>% # group to get individual ROC curve for each model	
 roc_curve(truth = high_booking_rate,predictedProb.1) %>% # get values to pl
ot an ROC curve	
 ggplot(aes(x = 1 - specificity, y = sensitivity, color = model)) + # plota
ROC curve for each model	
 geom_line(size = 0.15) +	
 geom_abline(slope = 1, intercept = 0, size = 0.4) +	
 coord_fixed() +	
 theme_cowplot()	

	

According	to	the	ROC	Curve,	in	the	(1-specificity)	0	to	0.25	interval,	Ridge	has	higher	
sensitivity,	so	Ridge	is	the	best	model	for	this	business	case.	

4.3 Question 3: Predict whether a property in DC would have a high
booking rate

4.3.1 Data Preparation and variable selection	

As	the	“summary”	model,	let’s	first	take	a	look	at	the	variable	selection.	For	variables	we	use,	
we	did	mainly	3	kinds	of	processing:	Recategorizing,	transforming	and	filling.	We	marked	
variables	 like	 “access,	 host_about”	 as	 1	 if	 there	 are	 word	 descriptions	 in	 these	 columns	
otherwise	0,	because	we	 think	providing	more	 infos	 in	 these	areas	would	help	 customer	
learn	more	about	the	property.	We	also	combined	some	categories	for	some	columns	such	
as	 “cancelation	 policy”	 “property	 type”,	 because	 some	 types	 only	 have	 less	 than	 10	
observations	that	might	create	bias	for	judgement,	and	might	cause	rank	efficiency	issues	
since	there	are	too	many	categories.We	transformed	the	text	column	“amenities”	to	several	
dummy	columns	to	detect	if	there	are	some	essential	and	commonly	used	amenities.	We	also	
create	“bedperCapita”	and	“host_years”	based	on	calculation.For	missing	values,	we	mostly	
fill	them	with	medians	or	the	most	common	category.For	Variables	we	deleted,	they	most	
fall	 in	 the	 following	 categories:	 Irrelevant	 By	 Nature,	 Inaccessible,	 Not	 Distinguishable,	
Location	that	already	transformed,	Many	NAs.	At	last,	we	filter	out	pricing	outliers	and	have	
4,869	rows	of	data	and	44	ready-for-use	variables.	

1. These	variables	are	not	relevant	to	our	model	by	nature:	“market”,	“randomControl”,	
“host_location”,	“host_neighbourhood”,	“is_location_exact”,“city”	

2. The	following	columns	are	not	available	until	someone	lives	in:	
“host_acceptance_rate”,“review_scores_checkin”,“review_scores_cleanliness”,“review_s
cores_communication”,“review_scores_location”,“review_scores_rating”,	
“review_scores_value”,“review_scores_accuracy”;	

3. By	scanning	the	value	of	the	following	columns,	they	either	have	same	value	or	does	
not	help	much	in	distinguishing	one	property	from	another:	
“description”,“is_business_travel_ready”,“requires_license”,“maximum_nights”,“neighb
orhood_overview”,“host_verifications”	The	reason	we	delete	“desription”	here	is	that	
we	did	not	do	text	mining	for	this	column	and	almost	all	the	properties	have	
description	here.	

4. Location	infos	are	already	transformed	to	variables	such	as	“min_MetroEntranceDist”,	
thus	these	colunms	will	be	used	no	more:	
“zipcode”,“latitude”,“longitude”,“state”,“neighbourhood”	

Create a list of the above irrelevant columns and delete them from the data
frame	
irr <- c("market", "randomControl", "host_location", "host_neighbourhood", "
host_verifications","is_location_exact","host_acceptance_rate","review_scores
_accuracy","review_scores_checkin","review_scores_cleanliness","review_scores
_communication","review_scores_location","review_scores_rating","review_score
s_value","description","is_business_travel_ready","requires_license","maximum
_nights", "neighbourhood","city","neighborhood_overview","zipcode","latitude"
,"longitude","state")	

	
df_dc <- df_dc[, !(names(df_dc) %in% irr)]	

Change word description columns to categorical var, more information may ma
ke the property a popular spot then a high rated property.	
df_dc$access <- ifelse(is.na(df_dc$access), 0, 1)	
df_dc$host_about <- ifelse(is.na(df_dc$host_about), 0, 1)	
df_dc$house_rules <- ifelse(is.na(df_dc$house_rules), 0, 1)	
df_dc$notes <- ifelse(is.na(df_dc$notes), 0, 1)	
df_dc$interaction <- ifelse(is.na(df_dc$interaction), 0, 1)	
df_dc$space <- ifelse(is.na(df_dc$space), 0, 1)	
df_dc$transit <- ifelse(is.na(df_dc$transit), 0, 1)	
	
#Transform host_since to a variable that indicates how long in years that the
 host has experience for	
df_dc$host_years <- 2020-as.numeric(substr(df_dc$host_since, start = 1, stop
= 4))	
	
# Convert currency(previous type: $00.00 in character) to number.	
df_dc$cleaning_fee <- as.numeric(gsub("\\$", "", df_dc$cleaning_fee))	
df_dc$price <- as.numeric(gsub("\\$", "", df_dc$price))	

## Warning: NAs introduced by coercion	

df_dc$extra_people <- as.numeric(gsub("\\$", "", df_dc$extra_people))	
df_dc$security_deposit <- as.numeric(gsub("\\$", "", df_dc$security_deposit))	

## Warning: NAs introduced by coercion	

# Recategorize some varibles to fewer meaningful categories	
	
#cancellation_policy	
df_dc$cancellation_policy[df_dc$cancellation_policy %in% c("super_strict_60"
, 	
 "strict_14_with_grace_period","super_strict_30")] <- "strict"	
	
#accommodates	
df_dc <- df_dc %>%	
 mutate(accommodateCat = ifelse(accommodates <= 2, "1-2",ifelse(accommodates
 >3 & accommodates <= 4, "3-4",	ifelse(accommodates >4 & accommodates <= 10,
"5-10",">10"))))	
#host_listings_count	
df_dc <- df_dc %>%	
 replace_na(list(host_listings_count = mode(df_dc$host_listings_count))) %>%	
 mutate(host_listings_count = ifelse(host_listings_count <= 2, "0-2",	ifelse
(host_listings_count >3 & host_listings_count <= 15, "3-15",ifelse(host_listi
ngs_count >15 & host_listings_count <= 100, "15-100",">100"))))	
# property_type	
df_dc$property_type[df_dc$property_type %in% c("Barn" , "Boat", "Tiny house",

 "Cottage","Aparthotel","Boutique hotel","Hostel","Villa", "Bungalow")] <- "O
ther"	

#Process columns to get new meaningful columns	
	
#bedperCapita	
df_dc <- df_dc %>%	
 mutate(bedperCapita = beds / accommodates) 	
	
# wifi, TV, kitchen and washer	
df_dc <- df_dc %>%	
 mutate(amenity_wifi = str_detect(amenities,"Wifi")) %>% 	
 mutate(amenity_TV = str_detect(amenities,"TV")) %>% 	
 mutate(amenity_Washer = str_detect(amenities,"Washer")) %>% 	
 mutate(amenity_Kitchen = str_detect(amenities,"Kitchen"))	
	
# Change amenities to the number of amenity it has	
df_dc$amenities <- str_count(df_dc$amenities, ',')+1	
	
df_dc$host_response_rate <- as.numeric(gsub("%", "", df_dc$host_response_rate
))	

## Warning: NAs introduced by coercion	

#Delete transformed columns	
trans <- c("host_since","beds","accommodates")	
df_dc <- df_dc[, !(names(df_dc) %in% trans)]	

#Remove pricing outliers. 	
nrow(df_dc)	

## [1] 5492	

Q <- quantile(df_dc$price, probs=c(.25, .75), na.rm = TRUE)	
iqr <- IQR(df_dc$price, na.rm = TRUE)	
up <- Q[2]+1.5*iqr # Upper Range 	
low<- Q[1]-1.5*iqr # Lower Range	
df_dc<- subset(df_dc, df_dc$price > low & df_dc$price < up)	
nrow(df_dc)	

## [1] 4869	

#Scan for NA	
skim(df_dc)	

#see a special column, host_response_time	
#Since this column has 1369+4 missing values, we think it cannot be simply re
placed by the most common category, thus just delete that	
df_dc %>%	
 group_by(host_response_time) %>%	

 tally() %>%	
 arrange(n)	

#delete columns that have too many NAs	
manyNA <- c("monthly_price","weekly_price","square_feet","host_response_time"
)	
df_dc <- df_dc[, !(names(df_dc) %in% manyNA)]	
	
Replace NA with the most frequent category or medians. For ward that are mi
ssing, fill them with 0.	
df_dc <- df_dc %>% 	
 replace_na(list(host_has_profile_pic = TRUE, na.rm = TRUE)) %>%	
 replace_na(list(host_identity_verified = TRUE, na.rm = TRUE)) %>%	
 replace_na(list(host_is_superhost = FALSE, na.rm = TRUE)) %>%	
 replace_na(list(wardName = 0, na.rm = TRUE)) %>% 	
 replace_na(list(bathrooms = median(df_dc$bathrooms, na.rm = TRUE)))%>%	
 replace_na(list(bedrooms = median(df_dc$bedrooms, na.rm = TRUE)))%>%	
 replace_na(list(cleaning_fee = 0, na.rm = TRUE)) %>%	
 replace_na(list(price = median(df_dc$price, na.rm = TRUE))) %>% 	
 replace_na(list(security_deposit = median(df_dc$security_deposit, na.rm = T
RUE))) %>%	
 replace_na(list(host_years = median(df_dc$host_years, na.rm = TRUE)))%>%	
 replace_na(list(wardCrime = median(df_dc$wardCrime, na.rm = TRUE)))%>%	
 replace_na(list(wardPerCapIncome = median(df_dc$wardPerCapIncome, na.rm = T
RUE)))%>%	
 replace_na(list(bedperCapita = median(df_dc$bedperCapita, na.rm = TRUE))) %
>%	
 replace_na(list(host_response_rate = median(df_dc$host_response_rate, na.rm
 = TRUE)))	

# Make sure categorical variables are factors	
colsToFactor <- c("high_booking_rate","bed_type","cancellation_policy","host_
listings_count","property_type","room_type","accommodateCat","host_has_profil
e_pic","host_identity_verified","host_is_superhost","instant_bookable","requi
re_guest_phone_verification","require_guest_profile_picture","amenity_wifi","
amenity_TV","amenity_Washer","amenity_Kitchen","wardName")	
df_dc <- df_dc %>% 	
 mutate_at(colsToFactor, ~factor(.))	

4.3.2 Explanatory and Predictive Techniques used for Question 3 and Underlying
Reasoning	

For	question	3,	 the	explanatory	and	predictive	techniques	used	are	similar	with	what	we	
have	done	in	question	1	and	2.	The	best	explanatory	model	in	question	3	used	is	ensemble	
method	 and	 logistic	 regression,	 because	 these	 methods	 can	 mark	 the	 significant	 and	
important	variables	and	compare.	For	prediction	models	we	choose	random	forest,	which	
gives	the	lowest	false	positive	rate	to	minimize	the	risk	of	loss	for	investors	to	the	greatest	
extent.	The	coding	portion	of	the	models	are	displayed	as	below.	

Logistic	Model	

fitLog<-glm(high_booking_rate ~ .-id, family ='binomial', data = df_dc)	
	
summary(fitLog)	

## 	
## Call:	
## glm(formula = high_booking_rate ~ . - id, family = "binomial", 	
## data = df_dc)	
## 	
…	
## 	
## Null deviance: 6314.5 on 4868 degrees of freedom	
## Residual deviance: 4132.7 on 4799 degrees of freedom	
## AIC: 4272.7	
## 	
## Number of Fisher Scoring iterations: 13	

Lasso	regression	

lambdaValues <- 10^seq(-3, 3, length = 100)	
set.seed(2020)	
fitLasso <- train(high_booking_rate ~ .-id, family ='binomial', data = df_dc,
 method='glmnet', trControl=trainControl(method='cv', number=10), tuneGrid =
expand.grid(alpha=1, lambda=lambdaValues))	
	
#Variable importance complete table	
varImp(fitLasso)$importance %>% 	
 rownames_to_column(var = "Variable") %>%	
 mutate(Importance = scales::percent(Overall/100)) %>% 	
 arrange(desc(Overall)) %>% 	
 as_tibble()	

## # A tibble: 71 x 3	
## Variable Overall Importance	
## <chr> <dbl> <chr> 	
## 1 bed_typeCouch 100 100% 	
## 2 room_typeShared room 69.4 69% 	
## 3 host_is_superhostTRUE 56.6 57% 	
## 4 property_typeBed and breakfast 42.3 42% 	
## 5 host_has_profile_picTRUE 37.7 38% 	
## 6 property_typeOther 31.9 32% 	
## 7 wardName126 31.8 32% 	
## 8 amenity_WasherTRUE 29.0 29% 	
## 9 property_typeGuesthouse 28.1 28% 	
## 10 property_typeServiced apartment 26.2 26% 	
## # … with 61 more rows	

#Variable importance plot with the most important variables	
plot(varImp(fitLasso),top = 25)	

	

Ridge	regression	

set.seed(2020)	
fitRidge <- train(high_booking_rate ~ .-id, family ='binomial', data = df_dc,
method='glmnet', trControl=trainControl(method='cv', number=10), tuneGrid = e
xpand.grid(alpha=0, lambda=lambdaValues))	
	
#Variable importance complete table	
varImp(fitRidge)$importance %>% 	
 rownames_to_column(var = "Variable") %>%	
 mutate(Importance = scales::percent(Overall/100)) %>% 	
 arrange(desc(Overall)) %>% 	
 as_tibble()	

## # A tibble: 71 x 3	
## Variable Overall Importance	
## <chr> <dbl> <chr> 	
## 1 bed_typeCouch 100 100.0000% 	
## 2 host_is_superhostTRUE 90.4 90.4242% 	
## 3 room_typeShared room 76.9 76.8950% 	
## 4 host_has_profile_picTRUE 66.7 66.6675% 	
## 5 property_typeBed and breakfast 59.7 59.6675% 	
## 6 bed_typePull-out Sofa 54.5 54.4700% 	
## 7 property_typeOther 50.9 50.8823% 	
## 8 wardName126 48.4 48.4445% 	
## 9 require_guest_profile_pictureTRUE 44.3 44.3030% 	
## 10 property_typeCondominium 40.0 40.0144% 	
## # … with 61 more rows	

#Variable importance plot with the most important variables	
plot(varImp(fitRidge),top = 25)	

	

Elastic	Net	

set.seed(2020)	
fitElastic <- train(high_booking_rate ~ .-id, family ='binomial', data = df_d
c, method='glmnet', trControl=trainControl(method='cv', number=10),tuneGrid=e
xpand.grid(alpha=0.5, lambda=lambdaValues))	
	
#Variable importance complete table	
varImp(fitElastic)$importance %>% 	
 rownames_to_column(var = "Variable") %>%	
 mutate(Importance = scales::percent(Overall/100)) %>% 	
 arrange(desc(Overall)) %>% 	
 as_tibble()	

## # A tibble: 71 x 3	
## Variable Overall Importance	
## <chr> <dbl> <chr> 	
## 1 bed_typeCouch 100 100% 	
## 2 room_typeShared room 62.4 62% 	
## 3 host_is_superhostTRUE 48.7 49% 	
## 4 bed_typePull-out Sofa 44.8 45% 	
## 5 property_typeBed and breakfast 39.7 40% 	
## 6 host_has_profile_picTRUE 39.0 39% 	
## 7 wardName126 31.7 32% 	
## 8 bed_typeFuton 29.3 29% 	
## 9 property_typeOther 28.4 28% 	
## 10 property_typeGuesthouse 26.9 27% 	
## # … with 61 more rows	

#Variable importance plot with the most important variables	
plot(varImp(fitElastic), top = 25) 	

	

Prediction	Model	

We	would	like	a	model	with	the	smallest	false	rate	in	predicting	false	positives.	The	reason	
is	that,	property	investment	involves	large	amount	of	money.	We	would	not	want	to	make	
false	predictions	if	a	property	would	not	achieve	high	booking	rate.	Thus,	we	would	want	
higher	specificity.	

# Split data to train the model	
set.seed(333)	
df_dcTrain <- df_dc %>% 	
 sample_frac(0.8)	
df_dcTest <- setdiff(df_dc, df_dcTrain)	

Lasso	Prediction	

set.seed(2020)	
fitLasso0 <- train(high_booking_rate ~ .-id, family ='binomial', data = df_dc
, 	
 method='glmnet', trControl=trainControl(method='cv', number
=10), 	
 tuneGrid = expand.grid(alpha=1, lambda=lambdaValues))	
resultsLasso <- 	
 fitLasso0%>%	
 predict(df_dcTest, type='raw') %>%	
 bind_cols(df_dcTest, predictedClass=.)	
	
resultsLasso %>% 	
 xtabs(~predictedClass+high_booking_rate, .) %>% 	
 confusionMatrix(positive = '1')	

## Confusion Matrix and Statistics	
## 	
## high_booking_rate	

## predictedClass 0 1	
## 0 567 106	
## 1 86 215	
## 	
## Accuracy : 0.8029 	
## 95% CI : (0.7765, 0.8274)	
## No Information Rate : 0.6704 	
## P-Value [Acc > NIR] : <2e-16 	
## 	
## Kappa : 0.5467 	
## 	
## Mcnemar's Test P-Value : 0.1703 	
## 	
## Sensitivity : 0.6698 	
## Specificity : 0.8683 	
## Pos Pred Value : 0.7143 	
## Neg Pred Value : 0.8425 	
## Prevalence : 0.3296 	
## Detection Rate : 0.2207 	
## Detection Prevalence : 0.3090 	
## Balanced Accuracy : 0.7690 	
## 	
## 'Positive' Class : 1 	
## 	

Ridge	Prediction	

set.seed(2020)	
fitRidge0 <- train(high_booking_rate ~ .-id, family ='binomial', data = df_dc
Train, 	
 method='glmnet', trControl=trainControl(method='cv', number
=10), 	
 tuneGrid = expand.grid(alpha=0, lambda=lambdaValues))	
	
resultsRidge <- 	
 fitRidge0%>%	
 predict(df_dcTest, type='raw') %>%	
 bind_cols(df_dcTest, predictedClass=.)	
	
resultsRidge %>% 	
 xtabs(~predictedClass+high_booking_rate, .) %>% 	
 confusionMatrix(positive = '1')	

## Confusion Matrix and Statistics	
## 	
## high_booking_rate	
## predictedClass 0 1	
## 0 566 119	
## 1 87 202	
## 	

## Accuracy : 0.7885 	
## 95% CI : (0.7615, 0.8138)	
## No Information Rate : 0.6704 	
## P-Value [Acc > NIR] : 2.588e-16 	
## 	
## Kappa : 0.509 	
## 	
## Mcnemar's Test P-Value : 0.03078 	
## 	
## Sensitivity : 0.6293 	
## Specificity : 0.8668 	
## Pos Pred Value : 0.6990 	
## Neg Pred Value : 0.8263 	
## Prevalence : 0.3296 	
## Detection Rate : 0.2074 	
## Detection Prevalence : 0.2967 	
## Balanced Accuracy : 0.7480 	
## 	
## 'Positive' Class : 1 	
## 	

Elastic	Net	Prediction	

set.seed(2020)	
fitElastic0 <- train(high_booking_rate ~ .-id, family ='binomial', data = df_
dcTrain, method='glmnet', trControl=trainControl(method='cv', number=10), tun
eGrid = expand.grid(alpha=0.5, lambda=lambdaValues))	
resultsElastic <- fitElastic0 %>%	
 predict(df_dcTest, type='raw') %>%	
 bind_cols(df_dcTest, predictedClass=.)	
	
resultsElastic %>% 	
 xtabs(~predictedClass+high_booking_rate, .) %>% 	
 confusionMatrix(positive = '1')	

## Confusion Matrix and Statistics	
## 	
## high_booking_rate	
## predictedClass 0 1	
## 0 568 105	
## 1 85 216	
## 	
## Accuracy : 0.8049 	
## 95% CI : (0.7786, 0.8294)	
## No Information Rate : 0.6704 	
## P-Value [Acc > NIR] : <2e-16 	
## 	
## Kappa : 0.5515 	
## 	
## Mcnemar's Test P-Value : 0.1681 	

## 	
## Sensitivity : 0.6729 	
## Specificity : 0.8698 	
## Pos Pred Value : 0.7176 	
## Neg Pred Value : 0.8440 	
## Prevalence : 0.3296 	
## Detection Rate : 0.2218 	
## Detection Prevalence : 0.3090 	
## Balanced Accuracy : 0.7714 	
## 	
## 'Positive' Class : 1 	
## 	

Random	Forest	Using	10-fold	CV	

tuneGrid <- expand.grid(.mtry = c(1 : 10))	
	
fitTree <- 	
 train(high_booking_rate ~ .-id, family ='binomial', data = df_dcTrain, meth
od = 'rf', na.action=na.pass, trControl=trainControl(method="cv",number = 10,
 allowParallel=TRUE), tuneGrid = tuneGrid, ntree = 200)	
	
resultsRandomF <- 	
 fitTree %>% 	
 predict(df_dcTest, type = 'raw', na.action=na.pass) %>% 	
 bind_cols(df_dcTest, predictClass=.)	
	
resultsRandomF %>% 	
 xtabs(~predictClass+high_booking_rate, .) %>%	
 confusionMatrix(positive = '1')	

## Confusion Matrix and Statistics	
## 	
## high_booking_rate	
## predictClass 0 1	
## 0 587 100	
## 1 66 221	
## 	
## Accuracy : 0.8296 	
## 95% CI : (0.8045, 0.8527)	
## No Information Rate : 0.6704 	
## P-Value [Acc > NIR] : < 2e-16 	
## 	
## Kappa : 0.6037 	
## 	
## Mcnemar's Test P-Value : 0.01043 	
## 	
## Sensitivity : 0.6885 	
## Specificity : 0.8989 	
## Pos Pred Value : 0.7700 	

## Neg Pred Value : 0.8544 	
## Prevalence : 0.3296 	
## Detection Rate : 0.2269 	
## Detection Prevalence : 0.2947 	
## Balanced Accuracy : 0.7937 	
## 	
## 'Positive' Class : 1 	
## 	

Bagged	decision	tree	

set.seed(2020)	
fitBaggedTree <- train(high_booking_rate ~ .-id, data=df_dcTrain, method='tre
ebag', 	
 trControl=trainControl(method='cv', number=10))	
	
#See the CV output (accuracy per pruning parameter etc.)	
fitBaggedTree$finalModel	
##Bagging classification trees with 25 bootstrap replications	

#See the variables plotted by importance (according to the bagged tree):	
plot(varImp(fitBaggedTree), top=20)	

	
#See the variables listed by importance (according to the bagged tree)	
varImp(fitBaggedTree)$importance %>% 	
 rownames_to_column(var = "Variable") %>%	
 mutate(Importance = scales::percent(Overall/100)) %>% 	
 arrange(desc(Overall)) %>% 	
 as_tibble()	

## # A tibble: 83 x 3	
## Variable Overall Importance	
## <chr> <dbl> <chr> 	
## 1 amenities 100 100% 	
## 2 availability_60 66.6 67% 	
## 3 availability_30 64.7 65% 	
## 4 availability_90 60.3 60% 	
## 5 cleaning_fee 52.9 53% 	
## 6 availability_365 49.8 50% 	
## 7 access 47.4 47% 	
## 8 host_is_superhostTRUE 41.7 42% 	
## 9 min_MetroEntranceDist 40.8 41% 	
## 10 price 39.5 40% 	
## # … with 73 more rows	

#Make predictions:	
resultsBaggedTree <-	
 fitBaggedTree %>% 	
 predict(df_dcTest, type='raw') %>% 	
 bind_cols(df_dcTest, predictedClass=.)	
	
resultsBaggedTree %>% 	
 xtabs(~predictedClass+ high_booking_rate, .) %>% 	
 confusionMatrix(positive = '1') 	

## Confusion Matrix and Statistics	
## 	
## high_booking_rate	
## predictedClass 0 1	
## 0 572 108	
## 1 81 213	
## 	
## Accuracy : 0.806 	
## 95% CI : (0.7797, 0.8303)	
## No Information Rate : 0.6704 	
## P-Value [Acc > NIR] : < 2e-16 	
## 	
## Kappa : 0.5513 	
## 	
## Mcnemar's Test P-Value : 0.05859 	
## 	
## Sensitivity : 0.6636 	
## Specificity : 0.8760 	
## Pos Pred Value : 0.7245 	
## Neg Pred Value : 0.8412 	
## Prevalence : 0.3296 	
## Detection Rate : 0.2187 	
## Detection Prevalence : 0.3018 	
## Balanced Accuracy : 0.7698 	
## 	

## 'Positive' Class : 1 	
## 	

Cutoff	selection	

In	 the	 above	 models,	 we	 can	 see	 that	 random	 forest	 model	 has	 the	 highest	
specificity(88.67%)	with	the	default	cutoff.	What	if	we	alter	the	cutoff?	Therefore	we	tried	to	
set	cut-off	at	0.5,	0.6,	0.7,	0.69,	0.65.	

Based	on	our	goal	 to	minimize	 false	positives,	we	 choose	0.69	as	our	 final	 cut-off,	which	
achieves	a	specificity	for	random	forest	model	of	97.55%.	With	this	model	and	cutoff,	there	
would	be	only	2.45%	chance	that	the	investor	invests	a	property	that	would	not	have	high	
booking	rate.	

5. Results and Findings

5.1 Results on Question 1: Community characteristics (Where the house should
be to invested)

In	question	1	where	the	model	only	performs	analysis	with	community	feature	independent	
variables,	 the	model	performance	 is	not	 acceptable.The	 result	 from	 the	 linear	 regression	
model	implies	that	only	1.96%	of	the	variation	of	the	dependent	variable	is	explained,	which	
is	the	probability	of	the	property	becoming	a	house	with	a	high	booking	rate.For	the	logistic	
model,	The	AIC	and	BIC	values	are	also	extremely	high,	which	represent	a	bad	performance	
for	 the	 model.	 The	 variance	 is	 high	 as	 well.	 Among	 the	 four	 variables,	 several	
wardName,wardCrime	 and	 wardCapIncome	 have	 a	 significant	 impact.	 Neither	 of	 these	
models	 are	 qualified	 to	 do	 further	 prediction.	However,	we	 can	 see	 there	 is	 a	 difference	
among	the	wards.	

5.2 Results on Question 2: Property characteristics (what kind of house should
be to invest)

To	verify	these	considerations,	we	built	some	different	explanatory	models.	Because	most	
variables	 are	 categorical	 variables,	we	use	different	data	 classification	methods	 to	 fit	 the	
model,	and	then	do	the	model	selection	based	on	their	performances.	We	firstly	did	logistic	
regression	 by	 setting	 the	 cutoff	 as	 0.5.	 The	VIF	 shows	 some	 categorical	 variables	 have	 a	
certain	level	correlation,	but	if	dropping	one	of	them	through	subset	selection,	the	AIC	will	
increase.	Then	we	use	the	regularization	method	to	build	Lasso,	ridge	regressions	and	Elastic	
net.	We	want	to	find	a	model	which	has	the	lowest	false	positive	rate	(1-specificity),	because	
the	 cost	 incurred	by	mispredictive	 ture	 (False	Positive)	 is	way	 larger	 than	 the	benefit	 of	
corrective	true	Positive.	If	we	predict	that	an	Airbnb	with	certain	features	can	be	popular	in	
the	D.C.	market,	and	recommend	our	investors	to	invest	in,	but	in	reality,	the	booking	rate	of	
his	Airbnb	is	pretty	 low,	which	 is	a	disaster.	So	by	fitting	with	four	different	models	with	
different	classification	methods,	the	ROC	curve	shows	the	ridge	model	has	the	lowest	false	
positive	rate	and	highest	accuracy.	Thus,	the	ridge	model	has	best	performance.	

According	to	the	variable	importance	table,	we	draw	the	conclusion	that:	property-type	and	
bed	type	have	significant	impact	on	the	popularity	of	the	Airbnbs	in	the	D.C.	market.	So	we	
would	like	to	suggest	to	investors	that	Property	type	of	the	Bed	and	breakfast,	the	Villa,	the	
Hostel,	the	Bungalow	and	the	Condominium	should	be	avoided.	When	considering	adding	
extra	beds	to	increase	the	probability	of	being	selected	by	potential	Airbnb	guests,	Pull-out	
Sofa	could	be	a	good	choice.	

We	 also	 did	 a	 visualization	 to	 illuminate	 the	 relationship	 among	 different	 variables.	 For	
apartment	 and	 house	 type	 Airbnb,	 the	 higher	 price,	 the	 lower	 probability	 to	 be	 a	 high-
booking-rate	Airbnb.	For	Town	house	Airbnb,	with	price	increasing,	the	probability	of	being	
high-booking-rate	 and	 non-high-booking	 rate	 is	 basically	 the	 same.	 The	 face	 wrap	 is	
classified	by	different	numbers	of	bathrooms.	This	graph	shows:	For	one	bathroom	Airbnbs,	
under	the	same	level	price,	the	more	bedrooms,	the	higher	probability	to	be	a	high-booking-
rate	Airbnb.	For	the	Airbnbs	containing	one	and	half	or	two	bathrooms,	even	with	a	higher	
price,	the	more	bedrooms,	the	probability	to	be	a	high-booking-rate	Airbnb	is	high.	So,	we	
would	 like	 to	 suggest	 that	 townhouse	 could	 be	 an	 option	 especially	 if	 it	 comes	 with	 a	
bathrooms	range	from	one	to	two	and	a	bedrooms	rang	from	one	to	four,	when	others	factors	
are	at	same	levels.	

5.3 Results on Question 3: Predict whether a property in DC would have a high
booking rate

Results	and	findings	for	Explanatory	Model	

The	logistic	regression	and	ensemble	methods	list	some	important/significant	variables	to	
compare.	Here	are	some	important	variables	in	a	glance.	1.	access,	notes,	house_rules:	having	
these	descriptions	would	boost	impression	of	the	asset.	2.	wardName:	properties	in	some	
wards	such	as	126	would	have	higher	booking	rates	than	others.	3.	amenity_wifi:	important	
in	amenities	to	attract	customers.	4.	room_type,	property_type:	certain	types	are	achieving	
higher	booking	rate,	as	explained	in	house	feature	studies.	5.	host_is_superhost:	becoming	a	
superhost	would	 help	 boost	 booking	 rate.	 But	we	 assume	 that	 should	 give	 credit	 to	 the	
marketing	strategy	of	Airbnb.	

Results	and	findings	for	Prediction	Model	

Based	on	our	goal	to	minimize	false	positives,	we	choose	random	forest	as	our	final	modeling	
method	and	0.69	as	our	final	cuttoff,	which	achieves	a	specificity	of	97.55%.	With	this	model	
and	cutoff,	there	would	be	only	2.45%	chance	that	the	investor	invests	a	property	that	would	
not	have	high	booking	rate.	

5.4 Overall Recommendation to investor

1.Ward	1,	Ward	2,	Ward	6	are	good	choices	to	consider	on	purchasing	airbnb	homes.	It	is	not	
necessary	for	investors	to	consider	much	about	other	community	features	in	D.C.	

2.The	relatively	popular	Airbnb	structure	are	the	ones	with	three-bedrooms	and	one	or	two	
bathrooms.	Most	townhouse	qualify	such	features.	So,	townhouse	could	be	an	good	option	
to	be	considered	as	investment	when	others	factors	are	at	the	same	level.	

3.It	is	a	good	consideration	to	contain	extra	beds	for	two	and	three	bedrooms	Airbnb	without	
raising	price	too	much.	It	is	very	helpful	to	increase	the	probability	of	booking	rate.	

4.Having	more	descriptions	of	 the	property	and	the	host	himself/herself	would	boost	the	
impression.	

5.Creating	more	comfortable	environments	to	customers	by	providing	key	amenities:	wifi,	
washer	and	dryer.	

6.Become	a	superhost.	

6. Conclusion and Discussion
We	have	concluded	that	 in	order	for	to	 invest	wisely	 in	airbnb	homes,	business	 investors	
should	purchase	a	home	preferably	in	ward	1,	2	or	6	of	the	Washington	DC	city.	Other	than	
the	ward	assignment,	the	rest	community	features	could	be	negligible	including	the	crime	
index	 of	 each	ward.	 This	 could	 potentially	 imply	 that	 either	 customers	 on	 airbnb	 for	DC	
market	choose	not	to	value	much	on	the	safety	of	the	surrounding	neighborhood	or	there	is	
not	a	significant	difference	on	the	crime	rate	for	different	wards	of	DC	that	is	enough	to	make	
an	impact.	

We	 also	 figured	 out	 that	 a	 three	 bedroom	with	 one	 or	 two	 bathroom	 types	 is	 the	most	
popular	arrangement	while	there	are	most	one	bedrooms	offered	in	the	DC	market.	This	can	
imply	that	customers	booking	airbnb	in	DC	are	more	likely	to	arrive	in	groups	than	single	
people	since	three	bedrooms	are	more	popular	than	one	bedroom	type.	

More	 importantly,	 after	 purchasing	 the	 properties.	 The	 host	 could	 work	 on	 the	 website	
listings	on	a	thorough	description	of	the	home	and	the	host	itself.	This	could	give	customers	
sufficient	details	and	a	closer	understanding	of	the	property	before	actually	arriving	at	the	
site.	Also,	planning	to	have	the	essential	amenities	like	Wifi,	microwave,	washer	etc,	could	
contribute	to	reaching	a	high	booking	rate	as	well.	Moreover,	becoming	a	superhost	with	
multiple	 airbnb	 home	 listings	 would	 help	 increase	 the	 booking	 rate.	 Customers	 would	
believe	 that	 superhost	 have	 sufficient	 experience	 in	 managing	 airbnb	 homes	 and	 have	
provided	great	rooms	so	that	they	have	the	chance	to	grow	and	become	a	superhost.	

Overall,	our	model	performance	and	results	are	reasonable	with	validated	statistics.	The	only	
limitation	to	our	model	is	that	we	would	not	be	able	to	utilize	all	the	variables	possible	in	the	
dataset	due	to	various	reasons.	The	most	vital	one	is	the	abundant	missing	values.	We	have	
replaced	some	missing	values	with	mean,	median	or	zero.	These	missing	values	would	create	
deviance	to	the	model	result	to	some	extent.	Therefore,	our	future	research	direction	would	
be	trying	to	gather	more	data	on	airbnb	homes	with	complete	and	detailed	information	so	
that	we	can	perform	the	model	analysis	in	an	even	more	precise	manner.	

7. Reference
a.	Metro	Station	Entrances	in	DC:	6/25/2019	
https://opendata.dc.gov/datasets/metro-station-entrances-in-
dc/data?orderBy=FEATURECOD&orderByAsc=false	

b.	How	to	calculate	geographic	distance:	http://www.nagraj.net/notes/calculating-
geographic-distance-with-r/	
c.	DC	Crime	Map	
https://dcatlas.dcgis.dc.gov/crimecards/all:crimes/all:weapons/2:years/citywide:heat	
d.	DC	Neighborhoods	in	Wards	
https://en.wikipedia.org/wiki/Neighborhoods_in_Washington,_D.C.	
e.	Per	Capita	Income	of	Wards	in	D.C.	
https://dcdataviz.dc.gov/page/ward-income-indicators#3	

